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Laser influence on positron-antiproton radiative capture collision
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Abstract. The laser-assisted radiative capture between a positron and an antiproton is studied in detail.
The theoretical results show that the cross-section for antihydrogen formation is significantly reduced with
the application of a laser background. This effect is most marked when the laser polarization is parallel to
the incident direction.

PACS. 34.50.Rk Laser-modified scattering and reactions – 34.70.+e Charge transfer – 32.80.Wr Other
multiphoton processes

1 Introduction

When two oppositely charged particles collide with each
other, bound states between them may form through
radiative recombination. However, such a recombination
process is extremely difficult; a small disturbance to the
state of either of the colliders may destroy the bound-
state formation. For instance, if this reaction is placed in
a laser background, the probability of bound-state forma-
tion may be reduced remarkably [1]. In this article, we will
investigate the influence of a laser on one of the simplest
radiative capture collisions,

e+ + p̄−→H̄ + �ω , (1.1)

Such a process, in a laser-free environment, can occur in
the trapped plasma of antiprotons and positrons or in the
collision between two beams of them [2,3]. In Section 2 we
give the S-matrix and the scattering amplitudes for each
partial wave. In Section 3 we discuss the laser-modified
cross-sections, and the dependence of the results on laser
strength, frequency, polarization direction, etc. Section 4
contains conclusions.

2 Theory

Let us consider the laser-assisted capture reaction (1.1) be-
tween a positron and an antiproton. During this process, L
photons may be exchanged between the laser background
and the positron-antiproton system. If we denote the im-
pact energy of the positron by E, the ground-state energy
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of final-state antihydrogen by W H̄
0 , the laser photon en-

ergy by �ω0, and the emitted photon energy in final state
by �ω, then we have

�ω = E + L�ω0 −W H̄
0 . (2.1)

We will assume that the laser field is treated classically as
a spatially homogeneous electric field, linearly polarized,
and single model,

ε = ε0 sinω0t . (2.2)

For the nonrelativistic case, the S-matrix element for
the laser-assisted positron-antiproton radiative capture
into the dressed ground state of antihydrogen (in the
atomic units � = e = m = 1) is

S = −i
∫ ∞

−∞
dt〈ψF (r, t)|a · ∇e−i(k·r−ωt)|χI(r, t)〉 (2.3)

in which a is the polarization vector of the final photon
state [4]. Here we have neglected the laser effect on the
antiproton because it is much heavier than the positron.
χI is the laser-modified wave function of the incident
positron [5,6],

χI(r, t) = (2π)−3/2eπξ/2Γ (1 − iξ)F (iξ, 1, i(pr − p · r))
× exp

[
i(p · r + p · α0 sinω0t−Et) − i

2c2

×
∫ t

−∞
dt′A2(t′)

]
(2.4)

with ξ = 1/137p, E = p2/2, α0 = ε0/ω
2
0 , and

F (iξ, 1, i(pr−p·r)) is the confluent hypergeometrical func-
tion. ψF is the dressed ground state of antihydrogen in the
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soft-photon approximation (see the Appendix),

ψF (r, t) = exp
[
−iW H̄

0 t−
i

2c2

∫ t

−∞
dt′A2(t′)

]
×

(
1 +

i

ω0
ε0 · r cosω0t

)
φH̄0 (r) , (2.5)

where

φH̄0 (r) =

√
η3

π
e−ηr(η = 1) (2.6)

is the ground-state wave function of antihydrogen. In
equation (2.5) the term i

ω0
ε0 · r cosω0t is responsible for

the laser modification on the antihydrogen state. This in-
dicates that the laser “stretches” the positron cloud in the
polarization direction. The stronger the laser, the more
the positron cloud is stretched; the lower the field fre-
quency, the more the positron deviates from its ground
state. Because the factor exp[− i

2c2

∫ t

−∞dt′A2(t′)] is ex-
actly the same in both the initial state of equation (2.4)
and the final state of equation (2.5), it will be cancelled in
the S-matrix of equation (2.3). Then the time integration
in equation (2.3) can be readily performed by using the
generating function for Bessel functions

eiy sin u =
∞∑

L=−∞
JL(y)eiLu (2.7)

and the formula

JL+1(y) + JL−1(y) =
2L
y
JL(y) . (2.8)

The result is

S = −i
∞∑

L=−∞
fLδ(E −W0 − ω − Lω0) , (2.9)

where

fL = NJL(p · α0)
(
M +

L

p · α0
M̃

)
(2.10)

in which N =
√
η5/πeπξ/2Γ (1 − iξ), and

M=
∫

d3r
a · r
r
ei(p−k)·r−ηrF (iξ, 1, i(pr − p · r)) , (2.11)

M̃ =
i

ω0

∫
d3r

[
ε0 · a − (ε0 · r)a · r

r

]
·ei(p−k)·r−ηrF (iξ, 1, i(pr − p · r)) . (2.12)

Equations (2.9) and (2.10) show that the S-matrix is de-
composed into many partial waves due to the laser modifi-
cation to the state of the incident positron. The amplitude
for each partial wave is proportional to a Bessel function
related to the incident momentum and laser strength. The

integrals in equations (2.11) and (2.12) can be evaluated
with the help of the following formula [4,7]:∫

d3r
ei(p−k)·r−ηr

r
F (iξ, 1, i(pr − p · r)) =

4π
[k2 + (η − ip)2]−iξ

[(p − k)2 + η2]1−iξ
. (2.13)

It is easy to show by differentiating under the integral sign
that

M = 8πi(1 − iξ)(a · p)
[k2 + (η − ip)2]−iξ

[(p − k)2 + η2]2−iξ
, (2.14)

M̃ = −4πi
ω0

(ε0 · a)
∂

∂η

[k2+(η−ip)2]−iξ

[(p−k)2+η2]1−iξ

+
8πi
ω0

(1−iξ)(a·p)ε0 · ∂
∂k

[k2+(η−ip)2]−iξ

[(p−k)2+η2]2−iξ
. (2.15)

In writing the above formula, we have taken into account
a · k = 0.

Summing over the emitted photon polarization in the
final state, we can write the differential cross-section of
the laser-assisted process (1.1) for each partial wave cor-
responding to L soft photons exchanged between the col-
lision system and the laser field,

dσL

dΩ
=

ω

2(2π)2v
|fL|2 =

ω

8π2p
|fL|2 , (2.16)

where v = p is the velocity of the incident positron, and
|fL|2 represents an average of |fL|2 over all emitted pho-
ton polarizations a [4]. The cross-section of antihydrogen
formation is the sum of all the partial cross-sections,

dσ
dΩ

=
∞∑

L=−∞

dσL

dΩ
. (2.17)

3 Results and discussion

In Figure 1 we display the differential cross-section of the
laser-assisted reaction (1.1) at an azimuth angle ϕ = 0◦
(we set the z-axis of the coordinate system along the
positron incident direction, and assume that the electric
vector of the laser field is in the xOz plane) for impact
energy E = 10 eV, with field strength ε0 = 108 V/cm,
and frequency �ω = 1.17 eV. The theoretical results show
that for a geometry in which the laser polarization is set
parallel or antiparallel to the incident direction ε0 ‖ kI,
the cross-section is greatly lowered (solid line). For a laser
polarization geometry perpendicular to the incident direc-
tion ε0 ⊥ kI, the result at small and large scattering angles
is increased (short-dashed line). At intermediate angles
the laser-modified cross-section is nearly indistinguishable
from the result in the absence of the laser (long-dashed
line). As a matter of fact, the radiative capture process
is extremely unstable, a small disturbance from the laser
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Fig. 1. Differential cross-sections of emitted photons against
the scattering angle θ at azimuth angle ϕ = 0◦ for the laser-
assisted radiative capture e+ + p̄−→H̄(1s)+�ω at positron en-
ergy E = 10 eV, laser strength ε0 = 10

8 V/cm, and frequency
�ω0 = 1.17 eV. Solid line: result for a parallel geometry ε0 ‖ kI.
Short-dashed line: result for a perpendicular geometry ε0 ⊥ kI.
Long-dashed line: laser-free result.

may destroy such a capture process, thus the probabil-
ity of antihydrogen formation is significantly reduced in
general. For a perpendicular geometry, the laser leads to
a small vertical vibration of the positron and hence in-
creases the probability of the positron to “meet” with the
target as it passes by. This causes the capture cross-section
to be slightly increased. Figure 2 gives the dependence of
the differential cross-section on the azimuthal angle for a
perpendicular geometry ε0 ‖ kI. We find that it is not
sensitive to the azimuthal angle.

Figure 3 exhibits the total radiative capture cross-
sections. All these results drop rapidly with increasing im-
pact energy. When the laser polarization is set in a parallel
geometry to the incident positron, the total cross-section
is remarkably reduced. The higher the impact energy, the
more difficult it is to form a bound state, thus the more
noticeably the cross-section is lowered. The cross-section
for a perpendicular geometry is slightly increased at low
energy where laser polarization gives noticeable contribu-
tions. With increasing energy, the laser modification of the
positron trajectory is too small to affect the total cross-
section. Both curves merge into one.

Figure 4 demonstrates the total cross-section for each
soft photon number L. We find that the contributions of
photon absorption (L < 0) and emission (L > 0) are
roughly symmetric. Only those L values contained in a
certain range have significant contributions.

Figure 5 illustrates the dependence of the total cross-
section on field strength in the case of parallel geometry.
The figure shows that at low laser intensities, the effect
of the laser is unimportant. When the field strength in-

Fig. 2. Differential cross-section against the azimuth angle
ϕ at scattering angle θ = 30◦ for a perpendicular geometry
ε0 ⊥ kI with E = 10 eV, ε0 = 10

8 V/cm, and �ω0 = 1.17 eV.
Short-dashed line: result with laser modification. Long-dashed
line: laser-free result.

Fig. 3. Total radiative capture cross-section for ε0 = 10
8 V/cm

and �ω0 = 1.17 eV. Solid line: result for ε0 ‖ kI. Short-dashed
line: result for ε0 ⊥ kI. Long-dashed line: laser-free result.

creases up to a certain value, the cross-section decreases
rapidly and is accompanied by oscillations. Figure 6 indi-
cates that the cross-section dependence on laser frequency
is opposite: the lower the frequency, the more the cross-
section is lowered. At high frequency, the effect of the laser
reaches saturation. In fact, the lower the frequency, the
more markedly the the positron is polarized in the incident
direction, thus the more the cross-section is reduced. Oth-
erwise if the laser frequency becomes higher and higher,
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Fig. 4. Total cross-section for each number of soft photons
exchanged between the scattering system and the laser back-
ground for a parallel geometry with E = 100 eV, ε0 =
108 V/cm, and �ω0 = 1.17 eV (L < 0 represents photon emis-
sion; L > 0 photon absorption).

Fig. 5. The dependence of the total cross-section on laser
strength at �ω0 = 1.17 eV and E = 100 eV. Solid line: re-
sult for a parallel geometry. Dashed line: laser-free result.

the positron can hardly respond so rapidly to the laser
oscillation, and the average dressing effect on the cross-
section is omissible. Figure 7 describes the cross-section
dependence on the polarization direction. The more the
polarization approaches the parallel direction, the smaller
the cross-section. With increasing polarization angle, the
result increases with many small oscillations. As the po-
larization turns up to a perpendicular geometry, the cross-
section reaches its maximum. The oscillations present in
these figures are mainly caused by the Bessel function

Fig. 6. Total cross-section against laser frequency for ε0 =
107 V/cm, and E = 100 eV. Solid line: result for a parallel
geometry. Dashed line: laser-free result.

Fig. 7. The dependence of the total cross-section on laser po-
larization direction (the electric vector varies in the xOz plane)
for E = 100 eV, ε0 = 10

8 V/cm, and �ω0 = 1.17 eV. Solid line:
laser present. Dashed line: laser-free result.

JL(p · α0) in equation (2.10). Because each component
in the spectrum varies with the field strength and polar-
ization in different ways, their contribution to the cross-
section sum is not synchronous with the scattering angle
increase. This is responsible for the oscillations shown in
these figures.
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4 Conclusions

We have presented a detailed investigation into the posi-
tron-antiproton radiative capture collision in the presence
of a laser field. The laser-modified wave function of the
positron is given, taking into account the Coulomb bound-
ary condition. The wave function of a dressed atom is im-
proved compared to that in preceding works (see the Ap-
pendix). The laser modification of the radiative capture
cross-section and its dependence on laser field strength,
frequency, and polarization direction are discussed.

In comparison with other laser-assisted electron cap-
ture processes between ions and atoms in which the cross-
section is mostly increased by a laser field [8–10], the cross-
section for laser-assisted radiative capture scattering in
most cases is lowered except for the perpendicular geome-
try. Thus it is not practical to use a laser to improve the ef-
ficiency of antihydrogen production in a radiative capture
collision. On the contrary, one may reduce the extent of ra-
diative capture with the application of a laser background.
The same mechanism applies to the electron-positron col-
lision or the collisions between oppositely charged light
and heavy particles.

This work is supported by the Returned Student Foundation
of Academia Sinica, the Start Foundation for Returned Stu-
dents of University of Science and Technology of China, and the
Chinese Research for Atomic and Molecular Data. Dr. Murry
Sherk read the manuscript.

Appendix: The dressed wave function of an
atom embedded in a laser field

Supposing that the electric vector of a laser field is given
by equation (2.2), the corresponding vector potential is

A = A0 cosω0t (A.1)

with A0 = cε0/ω0, here c is the velocity of light in
vacumm. The dressed states of an atom embedded in such
a field can be obtained by solving the coupled Schrödinger
equation (in the usual units)

i�
∂

∂t
ψ(r1, · · · , rZ , t) = 1

2m

Z∑
j=1

[
p̂j +

e

c
A(t)

]2
+ V (r1, · · · , rZ)


×ψ(r1, · · · , rZ , t) , (A.2)

where Z is the atomic number, and rj (j = 1, · · · , Z)
denotes the coordinate of the j-th electron of the atom.
Performing the gauge transformation

ψ(r1, · · · , rZ , t) =

exp
[
−i Ze

2

2mc2�

∫ t

−∞
dt′A2(t′)

]
ψ′(r1, · · · , rZ , t) , (A.3)

we obtain

i�
∂

∂t
ψ′(r1, · · · , rZ , t) = 1

2m

Z∑
j=1

p̂2j +
e

mc
A(t) ·

Z∑
j=1

p̂j + V (r1, · · · , rZ)


×ψ′(r1, · · · , rZ , t) . (A.4)

We shall assume that the corresponding undressed
Schrödinger equation is exactly solvable, and the second
term in (A.4) may be treated as a time-dependent pertur-
bation (i.e.

∣∣∣eA0/(c
√
mW )

∣∣∣ ∼ ∣∣∣eε0/(ω√mW )
∣∣∣ 
 1, W is

the bound energy of the atom with laser absent). Then
the new Schrödinger equation (A.4) is readily solved by
using time-dependent perturbation theory. Suppose that
the atom is initially at the state φn. Then the dressed
wave function to the first order in the soft-photon approx-
imation is given by [11]

ψ′
n(r1, · · · , rZ , t) =

e−
i
�

Wnt

{
φn(r1, · · · , rZ) − 1

2�

×
∑
m �=n

[
eiω0t

ωmn + ω0
+
e−iω0t

ωmn − ω0

]

×
〈
m| e
mc

A0 ·
Z∑

j=1

p̂j |n
〉
φm(r1, · · · , rZ)


≈ e− i

�
Wnt

φn(r1, · · · , rZ)− e

�mc
A0 cosω0t·

∑
m �=n

1
ωmn

×
〈
m|

Z∑
j=1

p̂j |n
〉
φm(r1, · · · , rZ)

 , (A.5)

where ωmn = (Em − En)/� is the Bohr frequency of the
atom. In treating the sum term in equation (A.5), an aver-
age excitation approximation is generally used to simplify
the computation in preceding works [11–14]. Here we find
that such an approximation is unnecessary, and the pre-
cision of the dressed wave function may be improved. In
fact, by using the relation [xi, pj ] = i�δij , it is easy to
show that ∑

m �=n

1
ωmn

|m〉〈m|p̂j |n〉 =
im

�
rj |n〉 . (A.6)

The wave function of (A.5) is then reduced to

ψ′
n(r1, · · · , rZ , t) ≈ e− i

�
Wnt

×
1 − ie

�2c
A0 cosω0t ·

Z∑
j=1

rj

φn(r1, · · · , rZ) =

e−
i
�

Wnt

1 − ie

�2ω0
ε0 cosω0t ·

Z∑
j=1

rj


×φn(r1, · · · , rZ) . (A.7)
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Substituting this into (A.3), we finally obtain the approx-
imate wave function of the dressed atom,

ψn(r1, · · · , rZ , t) ≈

exp
[
− i

�
Wnt− i Ze

2

2mc2�

∫ t

−∞
dt′A2(t′)

]

×
1− ie

�2ω0
ε0 cosω0t·

Z∑
j=1

rj

φn(r1, · · · , rZ). (A.8)

For the dressed states of an antihydrogen atom, we can
simply set Z = 1, and reverse the sign of charge.
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14. S. Varró, F. Ehlotzky, J. Phys. B: At. Mol. Opt. Phys. 30,
1061 (1997).


